jueves, 29 de noviembre de 2007

FOTOSINTESIS


Fases de la FotosíntesisLa fotosíntesis es un proceso que ocurre en dos fases. La primera fase es un proceso que depende de la luz (reacciones luminosas), requiere la energía directa de la luz que genera los transportadores que son utilizados en la segunda fase. La fase independiente de la luz (reacciones de oscuridad), se realiza cuando los productos de las reacciones de luz son utilizados para formar enlaces covalentes carbono-carbono (C-C), de los carbohidratos. Las reacciones oscuras pueden realizarse en la oscuridad, con la condición de que la fuente de energía (ATP) y el poder reductor (NADPH) formados en la luz se encuentren presentes. Investigaciones recientes sugieren que varias enzimas del ciclo de Calvin, son activadas por la luz mediante la formación de grupos -SH ; de tal forma que el termino reacción de oscuridad no es del todo correcto. Las reacciones de oscuridad se efectúan en el estroma; mientras que las de luz ocurren en los tilacoides.







REACCIONES DE LUZ En los procesos que dependen de la luz (reacciones de luz), cuando un fotón es capturado por un pigmento fotosintético, se produce la excitación de un electrón, el cual es elevado desde su estado basal respecto al núcleo a niveles de energía superior, pasando a un estado excitado. Después de una serie de reacciones de oxido-reducción, la energía del electrón se convierte en ATP y NADPH. En el proceso ocurre la fotólisis del agua, la que se descompone según la ecuación:H2 O + cloroplasto + fotón à 0,5 O2 + 2 H+ + 2 electrones.En la reducción de un mol de CO2 se utilizan 3ATP y 2 NADPH, que a través de una serie de reacciones enzimáticas producen los enlaces C-C de los carbohidratos, en un proceso que se efectúa en la oscuridad. En las reacciones de oscuridad, el CO2 de la atmósfera (o del agua en organismos fotosintéticos acuáticos/marinos) se captura y reduce por la adición de hidrógeno (H+ ) para la formación de carbohidratos [ ( CH2 O )] . La incorporación del dióxido de carbono en compuestos orgánicos, se conoce como fijación o asimilación del carbono. La energía usada en el proceso proviene de la primera fase de la fotosíntesis. Los seres vivos no pueden utilizar directamente la energía luminosa, sin embargo a través de una serie de reacciones fotoquímicas, la pueden almacenar en la energía de los enlaces C-C de carbohidratos, que se libera luego mediante los procesos respiratorios u otros procesos metabólicos.
FOTOSISTEMAS En la fotosíntesis cooperan dos grupos separados de pigmentos o fotosistemas, que se encuentran localizados en los tilacoides. Muchos organismos procariotes solamente tienen el fotosistema I (es el más primitivo desde el punto de vista evolutivo).











Los organismos eucariotes poseen los fotosistemas I y II. El fotosistema I está asociado a las formas de clorofila a, que absorbe a longitudes de onda de 700 nm ( P700 ), mientras que el fotosistema II tiene un centro de reacción que absorbe a una longitud de onda de 680 nm ( P680 ). Cada uno de estos fotosistemas se encuentra asociado a polipeptidos en la membrana tilacoidal y absorben energía luminosa independientemente. En el fotosistema II, se produce la fotólisis del agua y la liberación de oxígeno; sin embargo ambos fotosistemas operan en serie, transportando electrones, a través de una cadena transportadora de electrones. En el fotosistema I se transfieren dos electrones a la molécula de NADP+ y se forma NADPH, en el lado de la membrana tilacoidal que mira hacia el estroma.




FotofosforilaciónEs la síntesis de ATP que se produce cuando se exponen cloroplastos aislados a la acción de la luz, en presencia de ADP y fosfato. La formación de ATP a partir de la reacción de ADP y fosfato, es el resultado del acoplamiento energético de la fosforilación al proceso de transporte de electrones inducido por la luz, de la misma forma que la fosforilación oxidativa está acoplada al transporte de electrones y al consumo de oxígeno en las mitocondrias.ADP + Pi + cloroplastos + luz à ATP Pi = fosfato inorgánico.

En el fotosistema I se realiza la síntesis cíclica de ATP, que es independiente de la fotólisis del agua y de la formación de NADPH; mientras que la fotofosforilación no cíclica, está acoplada al transporte de electrones desde el agua, en el fotosistema II a través de una cadena transportadoraH2O + NADP+ + Pi + ADP+ cloroplastos + luz à ½ O2 + NADPH + H+ + ATP + H2 O La molécula de H2 O del lado izquierdo de la ecuación, cede los dos electrones necesarios para la reducción del NADP+ y el átomo de oxígeno que se libera en forma de ½ O2. La molécula de H2O del lado derecho de la ecuación procede de la formación de ATP a partir de la reacción de ADP + Pi.En la membrana tilacoidal como resultado de la fotólisis del agua y de la oxidación de la plastoquinona ( PQH2 ) se generan protones ( H+ ); que originan un fuerte gradiente de concentración de protones( H+ ) al ser transportados del lumen tilacoidal hacia el estroma. Este gradiente de pH a través de la membrana es responsable de la síntesis de ATP, catalizada por la ATPsintasa (o sintetasa) o conocida tambien como factor de acoplamiento; ya que acopla la síntesis de ATP al transporte de electrones y protones a través de la membrana tilacoidal. La ATPsintasa existe en los tilacoides del estroma y consta de dos partes principales: un tallo denominado CFo, que se extiende desde el lumen de la membrana tilacoidal hasta el estroma y una porción esférica ( cabeza) que se conoce como CF1 y que descansa en el estroma. Esta ATPasa es similar a la de las mitocondrias donde sintetiza ATP. El flujo cíclico de electrones tiene lugar en algunos eucariotes y bacterias fotosintéticas primitivas. No se produce NADPH , sino ATP solamente. Esto puede ocurrir cuando las células pueden requerir un suministro de ATP adicional, o cuando no se encuentre presente NADP+ para ser reducido a NADPH. En el fotosistema II, el bombeo de iones H+ dentro del tilacoide crea un gradiente electroquímico que culmina con la síntesis de ATP a partir de ADP +Pi.Las halobacterias, que crecen en agua extremadamente salada, son aerobias facultativas; ya que pueden crecer en ausencia de oxígeno. Los pigmentos púrpuras conocidos como retinal (pigmento encontrado en el ojo humano) funcionan como las clorofilas . La bacteriorodopsina es un complejo formado por retinal y proteínas de la membrana, la que genera electrones que establecen un gradiente de protones que activa una bomba ADP-ATP, que produce ATP en presencia de la luz, pero en ausencia de clorofila. Este comportamiento ayuda a sustentar la universalidad de la teoría quimio-osmótica de Mitchell, en la función de sintetizar ATP.

GENETICA BASICA

La genética es la ciencia que estudia la variación y la transmisión de rasgos o características de una generación a la otra. En esta definición, la palabra variación se refiere a variación genética; esto significa, el rango de posibles valores para un rasgo cuando es influenciado por la herencia. La herencia es la transmisión de rasgos de los padres a la descendencia vía el material genético. Esta transmisión toma lugar en el momento de la fertilización en la reproducción, cuando un espermatozoide de toro se une con el óvulo de la vaca para producir un ternero con una composición genética única. Solamente mellizos idénticos poseen la composición genética idéntica debido a que ellos descienden de un solo óvulo fertilizado que ha sido separado en dos embriones durante la primera fase del desarrollo.
2. ¿QUE ES MEDIO AMBIENTE?
El medio ambiente es generalmente entendido como los alrededores físicos del animal, luz, temperatura, ventilación y otros parámetros que pueden contribuir al confort físico del animal. Aún así, en genética, la palabra medio ambiente posee un significado más general. El medio ambiente es la combinación de todos los factores, con excepción de los genéticos, que pueden afectar la expresión de los genes. Por ejemplo, la producción de leche de la vaca se encuentra afectada por la edad al parto, la época del parto, la nutrición y muchos otros factores. Por lo tanto, vacas que tengan una composición genética similar o igual producirán diferentes cantidades de leche cuando se encuentren sometidas a diferentes medios ambientes. Por ejemplo, el desempeño en la lactancia de un par de mellizas idénticas variará drásticamente si dos terneras son separadas al nacer y enviadas a distintos países. Aún así, puede haber una gran diferencia en producción de leche entre estas gemelas cuando se ubiquen en dos explotaciones lecheras separadas pero dentro de la misma área, cada una teniendo diferentes niveles de manejo.
3. GENOTIPO Y FENOTIPO
El genotipo de un animal representa el gen o grupo de genes responsable por un rasgo en particular. En un sentido más general, el genotipo describe todo el grupo de genes que un individuo ha heredado.

Como contraste, el fenotipo es el valor que toma un rasgo; en otras palabras, es lo que puede ser observado o medido. Por ejemplo, el fenotipo puede ser la producción individual de leche de una vaca, el porcentaje de grasa en la leche o el puntaje de clasificación por conformación.

Existe una diferencia importante entre genotipo y fenotipo. El genotipo es esencialmente una característica fija del organismo; permanece constante a lo largo de la vida del animal y no es modificado por el medio ambiente. Cuando solamente uno o un par de genes son responsables por un rasgo, el genotipo permanece generalmente sin cambios a lo largo de la vida del animal (ejm. color de pelo). En este caso, el fenotipo otorga una buena indicación de la composición genética del individuo. Aún así, para algunos rasgos, el fenotipo cambia constantemente a lo largo de la vida del individuo como respuesta a factores ambientales. En este caso, el fenotipo no es un indicador confiable del genotipo. Esto generalmente se presenta cuando muchos genes se encuentran involucrados en la expresión de un rasgo tal como producción de leche. Como resultado, la producción de leche de una vaca depende de:
Producción fenotípica de leche = G + E, donde:
G es el mérito genético de la vaca para producción de leche (el efecto de los genes);
E se refiere al efecto del manejo de la vaca y medio ambiente.
4. EL MATERIAL GENETICO
El material genético se encuentra localizado en el núcleo de cada célula del cuerpo. A excepción de las células reproductoras (espermatozoides y óvulos) y algunas otras excepciones (glóbulos rojos sanguíneos), las células contienen dos copias del material genético completo del animal. Cuando la célula se divide, el material genético se organiza en una serie de estructuras largas en forma de fibras llamadas cromosomas (Figura 1). En las células del cuerpo, cada cromosoma posee una contraparte que posee el mismo largo y forma (con la excepción de los cromosomas que determinan el sexo) y contienen la información genética del mismo rasgo. Estos dos cromosomas son miembros de un par de cromosomas, uno derivado del padre y otro de la madre. El número de pares de cromosomas es típico de una especie y es generalmente abreviado con la letra "n". Por ejemplo, en humanos n=23, en cerdos n=19, en vacas n=30. Por lo tanto las células en el cuerpo humano, cerdos y vacas contienen 2n=46, 38 y 60 cromosomas, respectivamente.

Los genes se encuentran localizados a lo largo de los cromosomas. Un gen es la unidad funcional básica de la herencia; esto significa que contiene la información genética que es responsable por la expresión de un rasgo en particular. El largo completo de un cromosoma puede dividirse en miles de estas unidades funcionales, cada una responsable de un rasgo en particular.






Un gen se compone de ácido desoxiribonucleico o ADN. La función del ADN es la de llevar la información necesaria para la síntesis de proteínas. A medida que las proteínas son sintetizadas y que el ADN se replica a sí mismo, el número de células del cuerpo se incrementa (crecimiento) y las células pueden especializarse dentro de diferentes funciones específicas (desarrollo) en las que algunos genes se expresan otros no. Por ejemplo, las células de la piel (tejido especializado) contienen todo el material genético necesario para recrear un individuo, pero los únicos genes especializados que se expresan en estas células son los responsables por la formación y el color del pelo.
5. TRANSMISION DEL MATERIAL GENETICO

5.1 Macho y hembra

Los testículos del toro y los ovarios de la vaca producen las células reproductoras por una serie de divisiones celulares que separan el número de cromosomas en una célula. El espermatozoide y el ovario contienen solamente un miembro del par de cromosomas. Por lo tanto, las células de la vaca y del toro contienen 60 cromosomas (2n = 60), pero el espermatozoide en el semen y el óvulo en los ovarios contienen solamente 30 cromosomas (n=30, Figura 2). Los dos principios básicos de la transmisión de un rasgo (ejm. sexo) son los siguientes (Figura 2):

1) Separación de los pares de cromosomas durante la formación de las células reproductoras;
2) Unión del espermatozoide con el óvulo para crear una nueva célula con un conjunto único de cromosomas.




Figura 2: Los cromosomas son transmitidos por las células reproductoras que contienen solamente la mitad del número normal de cromosomas de la especie. El azar, en el momento de la fertilización, es el responsable de los rasgos específicos heredados por la descendencia (ejm., género).

Para 29 pares de cromosomas, ambos miembros son visualmente idénticos. De todas formas, para uno de los pares, un miembro es mucho más largo; es llamado cromosoma X, y el miembro más corto es llamado cromosoma Y. Todos los óvulos llevan el cromosoma X, pero el espermatozoide puede llevar ya sea el cromosoma X o el Y. Durante la división celular para formar las células reproductoras, cada miembro del par de cromosomas va hacia una célula por separado. Como resultado, 50% de los espermatozoides llevarán el cromosoma X y el otro 50%, el cromosoma Y. Si por casualidad un espermatozoide que lleva el cromosoma Y fertiliza un óvulo, la descendencia será macho. Si la descendencia recibe dos cromosomas X, se desarrollará una hembra (Figura 2). Es importante darse cuenta que es imposible predecir el sexo de la descendencia al momento del apareamiento (inseminación); aún así, podemos predecir que, en promedio, 50% de la descendencia serán machos y 50% hembras.

5.2 Rasgos cualitativos

Los rasgos cualitativos tienden a caer dentro de categorías discretas. Generalmente solo uno o unos pocos genes poseen un gran efecto sobre los rasgos cualitativos. El medio ambiente tene generalmente un pequeño papel al influenciar la categoría dentro de la que el animal cae. En este caso, el fenotipo de un animal refleja su genotipo. Ejemplos de rasgos cualitativos son:
* Color de pelo;
* Defectos hereditarios como enanismo;
* Presencia o ausencia de cuernos;
* Tipo sanguíneo.
5.3 Rasgos cuantitativos

Los rasgos cuantitativos difieren de los cualitativos de dos formas importantes:
1) Se encuentran influenciados por muchos pares de genes;
2) La expresión fenotípica es influenciada más fuertemente por el medio ambiente que en el caso de los rasgos cualitativos.
Muchos de los rasgos de importancia económica importante en el ganado lechero son cuantitativos:
* Producción de leche;
* Composición de la leche;
* Conformación (también llamado tipo);
* Eficiencia de conversión de alimento;
* Resistencia a enfermedades.
La influencia combinada de muchos genes y el efecto del medio ambiente en los rasgos cuantitativos hacen que sea mucho más difícil el determinar el genotipo exacto que en el caso de la mayoría de los rasgos cualitativos. Algunas veces, el fenotipo del animal nos dice muy poco acerca de su genotipo. Por ejemplo, un registro de lactancia solamente dice una fracción de la información acerca de el mérito genético de la vaca para producción de leche.

5.4 Qué hace que el genotipo de una vaca sea único?

Cuando se forman los óvulos, ellos reciben uno de los dos miembros del par de cromosomas. Por lo tanto, un cromosoma en particular en un óvulo puede ser el primer o el segundo miembro del par de cromosomas de los padres. Existen solamente dos tipos de óvulos para un gen en particular. Si en lugar de un par de cromosomas, consideramos dos, cuál es el número de diferentes óvulos?. En otras palabras, cuál es el número total de combinaciones cromosómicas posibles?. La situación es la misma que la de arrojar dos monedas al mismo tiempo. El número de posibles combinaciones es: dos posibles valores para la primera moneda multiplicado por los dos posibles valores de la segunda = 2 x 2 = 22 = 4 diferentes posibilidades. El número de diferentes genotipos para un óvulo es cuatro y la probabilidad de una combinación en particular de cromosomas es de 1/4. Esto es también verdad para el número de posibles genotipos en las células reproductoras masculinas. Por lo tanto, cuando uno de cuatro posibles clases de espermatozoides fertiliza uno de cuatro posibles combinaciones de óvulos el número de descendientes genéticamente diferentes es 4 x 4 = 16 (ejm., 22 x 22 ). Por lo tanto, las chances de que un genotipo en particular se presente en el recién nacido es 1/16.

Cuando los 30 pares de cromosomas del ganado lechero se separan durante la formación de las células reproductoras y luego se vuelven a unir en el momento de la fertilización, el número total de posibles combinaciones cromosómicas es 230 x 230 = 1.152.900.000.000.000.000, cada uno siendo único. Con este número de posibilidades para cada apareamiento, es fácil entender por qué dos individuos no son iguales en una población, aún cuando tengan el mismo padre.
RNA

Ácido ribonucleico

De Wikipedia, la enciclopedia libre
Saltar a
navegación, búsqueda
El ácido ribonucleico (ARN o RNA) es un ácido nucleico, polímero lineal de nucleótidos formando una larga cadena. El eje de la cadena lo forman grupos fosfato y azúcares ribosa de forma alternativa del que toma su nombre. Los nucleótidos del ARN contienen el azúcar ribosa y entre sus bases nitrogenadas al uracilo, a diferencia del ácido desoxirribonucleico (ADN) cuyo azúcar es una desoxirribosa y contiene a la timina en vez del uracilo. La función principal del ARN es servir como intermediario de la información que lleva el ADN en forma de genes y la proteína final codificada por esos genes.Fue descubierto por Severo Ochoa.
El ARN es
transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es un enigma del que nadie sabe la respuesta.

Flujo de la información genética [editar]
El material genético de las células se encuentra en forma de
ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo; pero el proceso no es lineal, es bastante complejo. El ADN no se traduce directamente en proteínas.
En las células
eucariotas el ADN se encuentra encerrado en el núcleo. La síntesis de ADN se hace en el núcleo, así como también la síntesis de ARN, pero la síntesis de proteínas ocurre en el citoplasma. El mecanismo por el cual la información se trasvasa desde el núcleo celular al citoplasma es mediante la trascripción del ARN a partir del ADN y de la traducción de proteínas a partir de ARN.

ARN, el mensajero [editar]
Parte del ADN se transcribe en ARN. El ARN va como un mensajero al citoplasma y allí el
ribosoma es el lugar físico para la traducción de los genes a proteínas.

Tipos de ARN [editar]
ARN mensajero.
ARN de transferencia.
ARN ribosomal.
ARN de interferencia.

ARN en otros organismos [editar]
El ARN es el principal material genético usado en los organismos llamados
virus, y el ARN también es importante en la producción de proteínas en otros organismos vivos. La mecánica del ARN en los organismos eucarioticos es similar en los organismos procarióticos. El ARN puede moverse dentro de las células de los organismos vivos y por consiguiente sirve como una suerte de mensajero genético, transmitiendo la información guardada en el ADN de la célula, desde el núcleo hacia otras partes de la célula donde se usa para ayudar a producir proteínas. Una sola hebra de ADN se usa a la vez, el RNA polimerasa es la enzima que cataliza el proceso y las bases nitrogenadas son las mismas. Solo que en los procariotes, no existe el núcleo.

Traducción [editar]
El ARN se transcribe a partir de una de las dos cadenas del ADN. En caso contrario, al transcribirse ambas al mismo tiempo, de una de las hélices saldría una proteína y de la otra algo totalmente diferente.
Por ejemplo, si en una de las cadenas de ADN hubiera: GATACA, en la otra cadena, la homóloga, debería haber: CTATGT.
La primera al transcribirse a ARN daría dos
codones: GAU-ACA. La segunda CUA-UGU.
La primera formaría la cadena de aminoácidos siguiente. En el primer caso:
Ácido Aspártico-Treonina y en el segundo caso: Leucina-Cisteína.
Que sólo se transcriba una hélice no significa que siempre sea la misma a lo largo de todo el
cromosoma. Puede transcribirse una hélice en un sitio y otra en otro.
En la traducción de codones a aminoácidos intervienen otras moléculas de ARN, las llamadas
ARN de transferencia.
Algunas moléculas de ARN presentan
actividad catalítica, y son conocidas como ribozimas. La mayoría de los ARN son autocatalíticos, ya que catalizan su propio procesamiento. Su hallazgo es relativamente reciente, y antes se consideraba que solo las proteínas eran las únicas macromoléculas capaces de poseer actividad catalítica.

Bases Nitrogenadas y complemento [editar]
Están formadas por pares de bases, la unión de estas es semejante a la del ADN, pero difiere en que la adenina (A) se une al uracilo (U), entonces su complemento es:
- Uracilo (U) con Adenina (A)
- Citosina (C) con Guanina (G)=
U - A
C - G

Azúcar [editar]
El ARN contiene el azúcar
pentosa (o sea de con 5 carbonos) llamada ribosa y sus moléculas están formadas también por pares de bases, de ahí ribonucleico.

Función a la materia viva [editar]
La función principal del ARN es servir como intermediario a la información que le lleva el ADN en forma de genes y la proteína final codificada por esos genes. El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado por muchas más proteínas. El código genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo, pero el proceso es lineal, es bastante complejo.

ADN


Ácido desoxirribonucleico


Modelo tridimensional de una sección del ADN. Puede ver una animación de esta imagen pulsando sobre ella
El ácido desoxirribonucleico, frecuentemente abreviado ADN (y también DNA, del inglés Deoxyribonucleic Acid), constituye el principal componente del material genético de la inmensa mayoría de los organismos, junto con el
ARN, siendo el componente químico primario de los cromosomas y el material con el que los genes están codificados.
La función Principal del ADN es mantener a través del
código genético, la información genética necesaria para crear un ser vivo idéntico a aquel del que proviene (o casi similar, en el caso de mezclarse con otra cadena como es el caso de la reproducción sexual o de sufrir mutaciones. Las cadenas de polipeptídicas codificadas por el ADN pueden ser estructurales como las proteínas de los músculos, cartílagos , pelo, etc., bien funcionales como las de la hemoglobina o las innumerables enzimas del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de plano o receta para nuestras proteínas.
Para hacerse una idea, una diminuta cantidad de ADN en un huevo fertilizado, determina casi todas las características físicas del
animal en su desarrollo completo; por ejemplo: la diferencia entre un ser humano y una rana está codificada en una parte relativamente pequeña de este ADN.
En los organismos
procariotas (moneras), así como en las mitocondrias y cloroplastos eucariotas, el ADN se presenta como una doble cadena (de cerca de 1 mm de longitud), circular y cerrada, que toma el nombre de cromosoma bacteriano, que es circular excepto en las micoplasmas, que es lineal. En los Eucariotas el ADN se encuentra localizado principalmente en el núcleo, apareciendo el superenrrollamiento (trenzamiento de la trenza) y la asociación con proteínas histónicas y no histónicas. El ADN se enrolla (dos vueltas) alrededor de un octeto de proteínas histónicas formando un nucleosoma, estos quedan separados por una secuencia de ADN de hasta 80 pares de bases, formando un "collar de perlas" o más correctamente denominado fibra de cromatina, siendo la estructura propia del núcleo interfásico, que no ha entrado en división. Este collar de nucleosomas vuelve a enrollarse y cada 6 nucleosomas constituyen un "paso de rosca" por medio de histoma H1 formando estructuras del tipo solenoide. En los virus, el ADN puede presentarse como una doble hélice cerrada, como una doble hélice abierta o simplemente como una única hebra lineal.
El ADN Se conoce desde hace más de cien años. Fue aislado por primera vez en 1869 por un médico alemán llamado
Friedrich Miescher, en la misma década notable en la cual Darwin publicó El Origen de las Especies y Mendel presentó sus resultados a la Sociedad de Historia Natural de Brünn. La sustancia que Miescher aisló era blanca, azucarada, ligeramente ácida y contenía fósforo, la encontró en el pus de las vendas y en el esperma de salmón; dado que la encontró en el núcleo de las células, la llamo nucleína, , aunque no fue reconocida hasta 1943 gracias al experimento realizado por Oswald Avery. Recién en 1953 Watson y Crick, en Inglaterra descubrieron en base a información de otros científicos la estructura molecular del ADN. Lo que permitió entender como la información genética es almacenada y procesada.

Naturaleza del adn
1.1 composición:
Cada
molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Estas cadenas forman una especie de escalera retorcida que se llama doble hélice y fue descubierta en 1953, a partir de una fotografía de Rosalind Franklin, por James Watson y Francis Crick (el artículo Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid fue publicado el 25 de abril de 1953 en Nature y dejaba claro el modo en que el ADN se podía "desenrollar" para que fuera posible su lectura o copia)... Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno, Este emparejamiento corresponde a la observación ya realizada por Erwin Chargaff (1905-2002). Se estima que el genoma humano haploide tiene alrededor de 3.000 millones de pares de bases. Dos unidades de medida muy utilizadas son la kilobase (kb) que equivale a 1.000 pares de bases, y la megabase (Mb) que equivale a un millón de pares de bases. Los componentes del ADN (polímero) son los nucleótidos (monómeros); cada nucleótido está formado por un:
1-acido fosfórico (grupo fosfato)
2-una desoxirribosa
3-base nitrogenada
El ADN lo forman cuatro tipos de nucleótidos, diferenciados por sus bases nitrogenadas divididas en dos grupos: dos purínicas denominadas adenina (A) y guanina (G) y dos pirimidínicas denominadas citosina (C) y timina (T). La estructura del ADN es una pareja de largas cadenas de nucleótidos. El complemento es el siguiente:
Adenina (A) con Timina (T)--->A - T
Citosina (C) con Guanina (G)->C – G
1.1.1ácido fosfórico
El Ácido fosfórico; de fórmula H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) tres
(trifosfato: ATP) grupos de acido fosfórico
1.1.2 desoxirribosa
Es un monosacárido de 5 átomos de
carbono (pentosa) derivado de la ribosa, que forma parte de la estructura de
nucleótidos del ADN
Su fórmula es C 5 H 10 O 4 Además de que esta contiene toda la información genética que será transferida así de
generación en generación. Por todo esto la desoxirribosa tiene una gran importancia en todo ser vivo existente. La
información genética no se transfiere en la desoxirribosa pero sí es una parte fundamental de todo proceso de información
genética ya que de éste se derivará la ribosa
1.1.3 bases nitrogenadas
1.1.3.1
timina:
La timina es una de las cuatro bases nitrogenadas que forman parte del ADN y en el código genético se representa con la
letra T. Forma el nucleósido timidina (dThd) y el nucleótido timidilato (dTMP). En el ADN, la timina siempre se empareja
con la adenina. La timina es una base orgánica nitrogenada de fórmula C5 H6 N2 O2 y es un compuesto cíclico derivado de
la pirimidina (es una ‘base pirimidínica’):
1.1.3.2
adenina:
La adenina es una de las cinco bases nitrogenadas que forman parte de los
ácidos nucleicos y en el código genético se
representa con la letra A. En el ADN la adenina siempre se empareja con la timina. Es un compuesto orgánico nitrogenado
de fórmula C5H5N5. Es un derivado de la purina (es una ‘base púrica’) en la que un hidrógeno ha sido sustituido por un
grupo amino (NH2)
La adenina, junto con la timina, fue descubierta en 1885 por el bioquímico alemán
Albrecht Kossel.
1.1.3.3
guanina
La guanina es una de las cinco bases nitrogenadas que forman parte de los ácidos nucleicos y en el código genético se
representa con la letra G. La guanina siempre se empareja en el ADN con la citosina mediante tres
enlace de hidrógeno.
1.1.3.4
citosina
La citosina es una de las cinco bases nitrogenadas que forman parte de los ácidos nucleicos) y en el código genético se
representa con la letra C.).
Es un derivado pirimidínico, con un anillo aromático y un grupo amino en posición 4 y un grupo cetónico en posición 2.
Su fórmula química es C4H5N3O y su
masa molecular es de 111.10 unidad masa atómicas. La citosina fue descubierta en 1894
cuando fue aislada en tejido del
timo de carnero.
1.2 estructura:
En cuanto a la estructura, decir que el ADN es una molécula bicatenaria; es decir: esta formada por dos cadenas dispuestas de forma paralela y con las bases nitrogenadas enfrentadas. En su estructura tridimensional, se pueden distinguir distintos niveles:
1.2.1 estructura primaria:
Nos muestra la secuencia de nucleótidos encadenados. Es en estas cadenas donde se encuentra la información
genética, y dado que el esqueleto es el mismo para todos, la diferencia de la información radica en la distinta
secuencia de bases nitrogenadas. Esta secuencia presenta un código, que presenta una información u otra, según el orden
de las bases.
1.2.2 estructura secundaria:
Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de
duplicación del ADN. Fue postulada por Watson y Crick, basándose en:
-La difracción de rayos X que habían realizado Franklin, Wilkins
-La equivalencia de bases de Chargaff,que dice que la suma de adeninas más guaninas es igual a la suma de timinas más
citosinas.
Es una cadena doble, dextrógira o levógira según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina de
una se une a la timina de la otra, y la guanina de una a la citosina de la otra. Ambas cadenas son antiparalelas, pues el
extremo 3´ de una se enfrenta al extremo 5´ de la otra.
Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick.
1.2.3 estructura terciaria
Se refiere a como se almacena el ADN en un
volumen reducido. Varía según se trate de organismos procariotas o
eucariotas:
a) En procariotas: se pliega como una súper-hélice en forma, generalmente, circular y asociada a una pequeña cantidad de
proteínas. Lo mismo ocurre en la
mitocondrias y en los cloroplastos.
b) En eucariotas: el empaquetamiento ha de ser más complejo y compacto y para esto necesita la presencia de proteínas,
como son las histonas y otras de naturaleza no histona(en los
espermatozoides las proteínas son las protaminas ) A esta
unión de ADN y proteínas se conoce como
cromatina, en la cual se distinguen diferentes niveles de organización

Propiedades
Entre las funciones y propiedades del ADN podemos resaltar que
1- El ADN controla la actividad de la
célula.
2- en ciertos casos, comúnmente derivados del caso anterior, el ADN puede llegar a tener cierta conductividad, según un estudio realizado.
Gracias al modelo de doble hélice el ADN:
3- Es el que lleva la información genética de la
célula, ya que las unidades de ADN, llamadas genes, son las responsables de las características estructurales y de la transmisión de estas características de una célula a otra en la división celular. Los genes se localizan a lo largo del cromosoma.
4- El ADN tiene la propiedad de duplicarse durante la división celular para formar dos moléculas idénticas, para lo cual necesita que en el
núcleo existan nucleótidos, energía y enzimas.
5- Capacidad de
mutación: justificando los cambios evolutivos.

Enlace de hidrógeno
La adhesión de las dos hebras de ácido nucleico se debe a un tipo de unión química conocido como enlace de hidrógeno o puente de hidrógeno. Los puentes de hidrógeno son uniones más débiles que los típicos enlaces químicos covalentes, tales como los que conectan los átomos en cada hebra de ADN, pero más fuertes que interacciones hidrófobas individuales, enlaces de Van der Waals, etc... El hecho que las hebras de la hélice de ADN estén unidas mediante puentes de hidrógeno hace que éstas puedan separarse entre sí con relativa facilidad, por ejemplo mediante un incremento de la temperatura, quedando intactas en sus componentes. La fortaleza relativa de la unión entre las dos hebras del ADN reside en la suma de gran cantidad de enlaces de hidrógeno a lo largo de las dos hebras paralelas. Se forman dos enlaces de hidrógeno por cada unión A=T y tres por cada emparejamiento C≡G.


El ADN como almacén de información
En realidad se puede considerar así, un almacén de información (mensaje) que se trasmite de generación en generación, conteniendo toda la información necesaria para construir y sostener el organismo en el que reside.
Se puede considerar que las obreras de este mecanismo son las proteínas. Estas pueden ser estructurales como las proteínas de los músculos, cartílagos, pelo, etc., o bien funcionales como las de la hemoglobina, o las innumerables enzimas, del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de plano o receta para nuestras proteínas. Unas veces la modificación del ADN que provoca disfunción proteica lo llamamos enfermedad, otras veces, en sentido beneficioso, dará lugar a lo que conocemos como evolución.
Las alrededor de treinta mil proteínas diferentes en el cuerpo humano están hechas de veinte aminoácidos diferentes, y una molécula de ADN debe especificar la secuencia en que se unan dichos aminoácidos.
El ADN en el genoma de un organismo podría dividirse conceptualmente en dos, el que codifica las proteínas y el que no codifica. En el proceso de elaborar una proteína, el ADN de un gen se lee y se transcribe a ARN. Este ARN sirve como mensajero entre el ADN y la maquinaria que elaborará las proteínas y por eso recibe el nombre de ARN mensajero. El ARN mensajero instruye a la maquinaria que elabora las proteínas, para que ensamble los aminoácidos en el orden preciso para armar la proteína.
El dogma central de la biología molecular plantea que el flujo de actividad y de información es: ADN → ARN → proteína
En la actualidad se asume que este dogma es cierto en la mayoría de los casos, pero se conocen importantes excepciones: En algunos organismos (virus de ARN) la información fluye de ARN a ADN, este proceso se conoce como "transcripción inversa o reversa". Adicionalmente, se sabe que existen secuencias de ADN que se transcriben a RNA y son funcionales como tales, sin llegar a traducirse a proteína nunca.

El ADN basura
El mal llamado ADN basura corresponde a secuencias del genoma procedentes de duplicaciones, translocaciones y recombinaciones de virus, etc., que parecen no tener utilidad alguna. No deben confundirse con los intrones. Corresponde a más del 90% de nuestro genoma, que cuenta con 20.000 ó 25.000 genes. Inicialmente se pensaba que no tenían utilidad alguna, pero distintos estudios recientes apuntan a que eso puede no ser cierto en absoluto. Entre otras funciones, se postula que el llamado "ADN basura" regula la expresión diferencial de los genes. También es llamado Intrón, o sea ADN no codificante.

Chips de ADN (Microarrays)
Son colecciones de oligonucleótidos de ADN complementario dispuestos en hileras fijadas. Estos chips de ADN se usan para el estudio de mutaciones genéticas de genes conocidos o para monitorizar la expresión génica de una preparación de ARN.


LA EVOLUCION





La evolución biológica es el proceso continuo de transformación de las especies a través de cambios producidos en sucesivas generaciones, y que se ve reflejado en el cambio de las frecuencias alélicas de una población.

Charles Darwin, padre de la teoría de la evolución por selección natural
Generalmente se denomina evolución a cualquier
proceso de cambio en el tiempo. En el contexto de las Ciencias de la vida, la evolución es un cambio en el perfil genético de una población de individuos, que puede llevar a la aparición de nuevas especies, a la adaptación a distintos ambientes o a la aparición de novedades evolutivas.
A menudo existe cierta confusión entre hecho evolutivo y teoría de la evolución. Se denomina hecho evolutivo al hecho científico de que los seres vivos están emparentados entre sí y han ido transformándose a lo largo del tiempo. La teoría de la evolución es el modelo científico que describe la transformación evolutiva y explica sus causas.
Charles Darwin y Alfred Russel Wallace propusieron la selección natural como principal mecanismo de la evolución. Actualmente, la teoría de la evolución combina las propuestas de Darwin y Wallace con las leyes de Mendel y otros avances genéticos posteriores; por eso es llamada Síntesis Moderna o Teoría Sintética. En el seno de esta teoría, la evolución se define como un cambio en la frecuencia de los alelos en una población a lo largo de las generaciones. Este cambio puede ser causado por una cantidad de mecanismos diferentes: selección natural, deriva genética, mutación, migración (flujo genético). La Teoría Sintética recibe una aceptación general en la comunidad científica, aunque también ciertas críticas. Ha sido enriquecida desde su formulación, en torno a 1940, por avances en otras disciplinas relacionadas, como la biología molecular, la genética del desarrollo o la paleontología.
El
Lamarckismo, la suposición de que el fenotipo de un organismo puede dirigir de alguna forma el cambio del genotipo en sus descendientes, es una posición teórica ya indefendible, en la medida en que es positivamente incompatible con lo que sabemos sobre la herencia; y también porque todos los intentos por hallar pruebas de observación o experimentales, han fracasado.
El
creacionismo, la posición de que en un grado u otro, los seres vivos tienen un autor personal consciente (léase Dios), es una posición religiosa o filosófica que no puede probarse científicamente, y no es por tanto una teoría científica. No obstante, en el marco de la cultura popular protestante y anglosajona, algunos se esfuerzan por presentarlo como tal; pero la comunidad científica en su conjunto considera tales intentos como una forma de propaganda religiosa.



Teoría científica
La evolución biológica es un fenómeno natural real, observable y comprobable empíricamente. La llamada Síntesis Evolutiva Moderna es una robusta teoría que actualmente proporciona explicaciones y modelos matemáticos sobre los mecanismos generales de la evolución o los fenómenos evolutivos, como la
adaptación o la especiación. Como cualquier teoría científica, sus hipótesis están sujetas a constante crítica y comprobación experimental.
Dobzhansky, uno de los fundadores de la Síntesis moderna, definió la evolución del siguiente modo: "La evolución es un cambio en la composición genética de las poblaciones. El estudio de los mecanismos evolutivos corresponde a la genética poblacional." [1] .
La síntesis moderna de la evolución se basa en tres aspectos fundamentales:
La
ascendencia común de todos los organismos de un único ancestro.
El origen de nuevos caracteres en un linaje evolutivo.
Los mecanismos por los que algunos caracteres persisten mientras que otros desaparecen.

Origen y desarrollo temprano de la vida

El origen de la vida
Artículo principal:
Origen de la vida
El origen de la vida, aunque atañe al estudio de los seres vivos, es un tema que realmente no es explicado en la teoría de la síntesis moderna de la evolución; pues ésta última sólo se ocupa del cambio en los seres vivos, y no de la creación y los cambios (evolución a moléculas más complejas) e interacciones de las moléculas orgánicas de las que procede.
No se sabe mucho sobre las etapas más tempranas y previas al desarrollo de la vida, y los intentos realizados para tratar de desvelar la historia más temprana del origen de la vida, generalmente se enfocan en el comportamiento de las macromoléculas, particularmente el
ARN, y el comportamiento de sistemas complejos.
Sin embargo, si se esta de acuerdo que todos los organismos existentes comparten ciertas características, incluyendo la estructura celular y el código genético; los que estarían relacionados con el origen de la vida. (Para los científicos que consideran a los
virus como seres vivos, si bien los mismos no tienen una estructura celular, evolucionaron a partir de organismos que sí las poseían, probablemente comportándose originalmente como transposones).

Ascendencia común
Artículo principal:
Ascendencia común
A partir de estas semejanzas, los científicos interpretan que ellas indican y serían la evidencia de que todos los seres vivos existentes comparten un "ancestro común", el cual ya había desarrollado los procesos celulares más fundamentales; aunque no hay acuerdo en la comunidad científica sobre la relación específica de los tres dominios de la vida (Archaea, Bacteria, Eukaryota). Siendo desde la teoría del ancestro común, el comienzo de las explicaciones que son dadas por la teoría de la síntesis moderna de la evolución; en relación a la historia evolutiva de la vida.
Así, a pesar de que los orígenes de la vida nos son todavía desconocidos en su totalidad, otros hitos relacionados a la historia evolutiva de la vida sí son bien sabidos. La aparición de la
fotosíntesis oxigénica (hace alrededor de 3000 millones de años) y el posterior surgimiento de una atmósfera rica en oxígeno y no reductora, puede rastrearse a través de depósitos laminares de hierro, y bandas rojas posteriores producto de los óxidos de hierro. Éste fue un requisito necesario para el desarrollo de la respiración celular aeróbica, la cual se cree que emergió hace aproximadamente 2000 millones de años. En los últimos mil millones de años, organismos pluricelulares simples, tanto plantas como animales, comenzaron a aparecer en los océanos. Poco después del surgimiento de los primeros animales, la explosión Cámbrica (un período breve de diversificación animal sin paralelo y notable, documentado en los fósiles encontrados en los sedimentos en Burgess Shale) vio la creación de la mayoría de los bauplans, o plan tipo, de los animales modernos. Hace alrededor de 500 millones de años, las plantas y hongos colonizaron la tierra, y fueron seguidos rápidamente por los artrópodos y otros animales, llevando al desarrollo de los ecosistemas terrestres con los que estamos familiarizados.

El surgimiento de nuevos caracteres y variación

Mecanismos de la herencia
En la época de Darwin, los científicos no estaban de acuerdo sobre cómo se heredan las características. Actualmente, el origen de la mayoría de las características hereditarias puede ser trazado hasta entidades persistentes llamadas
genes, codificados en moléculas lineales llamadas ADN. El ADN varía entre los miembros de una misma especie y también sufre cambios o mutaciones, o variaciones producidas a través de procesos como la Recombinación genética.

Mutación
Artículo principal:
Mutación
Darwin no conocía la fuente de las variaciones en los organismos individuales, pero observó que parecían ocurrir aleatoriamente. En trabajos posteriores se atribuyó la mayor parte de estas variaciones a la mutación. La mutación es un cambio permanente y transmisible en material genético (usualmente el ADN o el ARN) de una célula, que puede ser producida por errores de copia en el material genético durante la división celular y por la exposición a radiación, químicos o virus, o puede ocurrir deliberadamente bajo el control celular durante procesos como la meiosis o la hipermutación. En los organismos multicelulares, las mutaciones pueden dividirse en mutaciones germinales, que se transmiten a la descendencia, y las mutaciones somáticas, que (cuando son accidentales) generalmente conducen a malformaciones o muerte de células y pueden producir cáncer.
¿Por qué son importantes las mutaciones?
Las mutaciones introducen nuevas variaciones genéticas, siendo la principal fuente de evolución. En la teoría sintética, la mutación tiene el papel de generar diversidad genética sobre la cual actúa la selección natural, y también la deriva. Las mutaciones que afectan a la eficacia biológica del portador, y por tanto son objeto de la selección natural, pueden ser deletéreas (negativas) o beneficiosas. Las mutaciones beneficiosas son las menos frecuentes, aunque se conocen muchos ejemplos que afectan a rasgos variadísimos, como la resistencia a enfermedades o a estrés, la longevidad, el tamaño, la capacidad para metabolizar nuevas sustancias, una cicatrización eficiente de las heridas, etc. La mayor parte de las mutaciones son
mutaciones neutras; no afectan las oportunidades de supervivencia y reproducción de los organismos, y se acumulan con el tiempo a una velocidad más o menos constante.
La mayoría de los biólogos creen que la
adaptación ocurre fundamentalmente por etapas, mediante la acumulación por selección natural de variaciones genéticas ventajosas de efecto relativamente pequeño. Las macromutaciones, por el contrario, producen efectos drásticos, fuera del rango de variación normal de la especie. Se ha propuesto que quizá hayan sido responsables de ciertos rasgos adaptativos o de la aparición de novedades evolutivas, aunque, dado que las mutaciones suelen tener efectos muy nocivos o letales, esta vía se considera actualmente poco frecuente.

Recombinación genética
Artículo principal:
Recombinación genética
La recombinación genética es el proceso mediante el cual la información genética se redistribuye, con la cual se produce variación en la descendencia y diversidad dentro de cada especie.

Variaciones en la expresión de los genes, involucrados en la herencia
También existen formas de variación hereditaria que no están basadas en cambios de la información genética. El proceso que produce estas variaciones deja intacta la información genética y es con frecuencia reversible. Este proceso es llamado
herencia epigenética que resulta de la trasmisión de secuencias de información no-ADN a través de la meiosis o mitosis; y puede incluir fenómenos como la metilación del ADN o la herencia estructural. Se sigue investigando si estos mecanismos permiten la producción de variaciones específicas beneficiosas en respuesta a señales ambientales. De ser éste el caso, algunas instancias de la evolución podrían ocurrir fuera del cuadro típicamente darwiniano, que evitaría cualquier conexión entre las señales ambientales y la producción de variaciones hereditarias; aunque recordando que indirectamente el origen del proceso en si mismo estarían involucrados genes, como por ejemplo los genes de la enzima ADN-metiltransferasa, histonas, etc.

Sobrevivencia diferenciada de características
Al mismo tiempo que la mutación puede crear nuevos
alelos, otros factores influencian la frecuencia de los alelos existentes. Estos factores hacen que algunas características se hagan frecuentes mientras que otras disminuyen o se pierden completamente. De los procesos conocidos que influyen en la persistencia de una característica, o más precisamente, en la frecuencia de un alelo podemos mencionar:
Selección natural
Deriva genética
Flujo genético

Selección natural
Artículo principal:
Selección natural
La selección natural consiste en la reproducción diferencial de los individuos, según su dotación genética, y generalmente como resultado del ambiente. Existe selección natural cuando hay diferencias en eficacia biológica entre los individuos de una población, es decir, cuando su contribución en descendientes es desigual. La eficacia biológica puede desglosarse en componentes como la supervivencia (la mortalidad diferencial es la tasa de sobrevivencia de individuos hasta la edad de reproducción), la fertilidad, la fecundidad, etc.
La selección natural puede dividirse en dos categorías:
La sexual ocurre cuando los organismos más atractivos para el sexo opuesto debido a sus características se reproducen más y aumentan la frecuencia de estas características en el patrimonio genético común.
La ecológica ocurre en el resto de las circunstancias (habilidad para obtener o procesar alimento, capacidad de ocultación, huída o de defensa, capacidad para resistir fluctuaciones ambientales, etc.)
La selección natural trabaja con mutaciones en diferentes formas:
La purificadora o de fondo elimina las mutaciones perniciosas de una población.
La positiva aumenta la frecuencia de mutaciones benéficas.
La de balanceo mantiene las variaciones dentro de una población a través de mecanismos tales como:
La
sobredominancia o vigor híbrido,
La
selección dependiente de la frecuencia,
El papel central de la selección natural en la teoría de la evolución ha dado origen a una fuerte conexión entre ese campo y el estudio de la
ecología.
Las mutaciones que no se ven afectadas por la selección natural son llamadas
mutaciones neutras. Su frecuencia en la población está dictada por su tasa de mutación, por la deriva genética y el flujo genético. Se entiende que la secuencia de ADN de un organismo, en ausencia de selección, sufre una acumulación estable de mutaciones neutras. El efecto probable de mutación es la propuesta de que un gen que no está bajo selección será destruido por las mutaciones acumuladas. Éste es un aspecto de la llamada degradación genómica.
La selección de organismos por sus características deseables, cuando es provocada por el hombre, por ejemplo para la agricultura es llamada
selección artificial.
La
evolución baldwiniana se refiere a la forma en que los seres vivos capaces de adaptarse durante su vida, pueden producir nuevas fuerzas de selección.

Deriva genética
Artículo principal:
Deriva genética
La deriva genética describe las fluctuaciones aleatorias en la frecuencia de los alelos. Esto es de especial importancia en poblaciones reducidas, donde las posibilidades de fluctuación de una generación a la siguiente son grandes. Estas fluctuaciones en la frecuencia de los alelos entre generaciones sucesivas puede producir la desaparición de algunos alelos de una población. Dos poblaciones separadas que parten de la misma frecuencia de alelos pueden derivar por fluctuación aleatoria en dos poblaciones divergentes con diferente conjunto de alelos (por ejemplo, alelos presentes en una población y que desaparecieron en la otra).
Muchos aspectos de la deriva genética dependen del tamaño de la población (generalmente abreviada como N). En las
poblaciones reducidas, la deriva genética puede producir grandes cambios en la frecuencia de alelos de una generación a la siguiente, mientras que en las grandes poblaciones, los cambios en la frecuencia de los alelos son generalmente muy pequeños. La importancia relativa de la selección natural y la deriva genética en la determinación de la suerte de las nuevas mutaciones también depende del tamaño de la población y de la presión por la selección: Cuando N × s (tamaño de la población multiplicado por la presión por la selección) es pequeña, predomina la deriva genética. Así, la selección natural es más eficiente en grandes poblaciones o dicho de otra forma, la deriva genética es más poderosa en las poblaciones reducidas. Finalmente, el tiempo que le toma a un alelo fijarse en una población por deriva genética (es decir, el tiempo que toma el que todos los individuos de la población tengan ese alelo) depende del tamaño de la población: mientras más pequeña la población, menos tiempo toma la fijación del alelo.
Los efectos de la deriva genética son pequeños en la mayoría de las poblaciones naturales, pero pueden revestir especial importancia cuando tiene lugar la formación de una población a partir de muy pocos individuos o
efecto fundador, o cuando las poblaciones quedan reducidas a muy pocos individuos, es decir, pasan a través de un cuello de botella.
Efecto fundador: Es un proceso frecuente en algunas islas oceánicas, que son colonizadas por unos pocos individuos que genéticamente son poco representativos con respecto a la población de la que derivan.
Un ejemplo que ilustra este efecto fundador se encuentra en el grupo religioso
amish, fundado en 1771 en Pensilvania por unos pocos matrimonios. En la actualidad el 13% de las 17000 personas que forman el grupo portan en su genotipo un alelo que en homocigosis provoca enanismo y polidactilia. El número de casos registrados en esta población corresponde prácticamente a la totalidad de casos detectados en toda la población mundial. Se piensa que estas 17000 personas descienden de muy pocos individuos, algunos de los cuales eran portadores de este alelo.
Cuello de botella:Se produce cuando una situación en la que, debido a condiciones ambientales adversas u otras circunstancias, la población se reduce drásticamente. Con posterioridad recupera su número, pero a partir de un corto número de individuos. Esta situación puede implicar la desaparición de determinados alelos aleatoriamente o que aumente la frecuencia de otros que en la anterior situación estaban menos representados.

Microevolución y macroevolución
Artículos principales:
Microevolución y Macroevolución
Microevolución es un término usado para referirse a cambios de las frecuencias génicas en pequeña escala, en una población durante el transcurso de varias generaciones. Estos cambios pueden deberse a un cierto número de procesos: mutación, flujo génico, deriva génica, así como también por selección natural. La genética de poblaciones es la rama de la biología que provee la estructura matemática para el estudio de los procesos de la microevolución, como el color de la piel en la población Mundial.
Los cambios a mayor escala, desde la
especiación (aparición de una nueva especie) hasta las grandes transformaciones evolutivas ocurridas en largos períodos de tiempo, son comúnmente denominados Macroevolución (por ejemplo, los anfibios que evolucionaron a partir de un grupo de peces óseos). Los biólogos no acostumbran hacer una separación absoluta entre macroevolución y microevolución, pues consideran que macroevolución es simplemente microevolución acumulada y sometida a un rango mayor de circunstancias ambientales. Una minoría de teóricos, sin embargo, considera que los mecanismos de la teoría sintética para la microevolución no bastan para hacer esa extrapolación y que se necesitan otros mecanismos. La teoría de los equilibrios puntuados, propuesta por Gould y Eldredge, intenta explicar ciertas tendencias macroevolutivas que se observan en el registro fósil.

Especiación y extinción
Artículos principales:
Especiación y Extinción
La especiación es la aparición de una o más especies a partir de una pre-existente. Existen varios mecanismos por los cuales esto puede ocurrir. La especiación alopátrica comienza cuando una subpoblación de una especie queda aislada geográficamente, por ejemplo por fragmentación del hábitat o migración. La especiación simpátrica ocurre cuando una especie nueva emerge en la misma región geográfica. La especiación peripátrica, propuesta por Ernst Mayr, es un tipo de especiación que existe entre los extremos de la especiación alopátrica y simpátrica. La especiación peripátrica es un soporte fundamental de la teoría del Equilibrio puntuado. La especiación parapátrica donde las especies ocupan áreas biogográficas aledañas pero hay un flujo genético bajo.
La extinción es la desaparición de las especies. El momento de la extinción es considerado generalmente como la muerte del último individuo perteneciente a una especie. La extinción no es un proceso inusual medido en tiempo geológico - las especies son creadas por la especiación y desaparecen a través de la extinción.

Biología evolutiva
Artículo principal:
Biología evolutiva
La Biología evolutiva es un subcampo de la biología que se ocupa de la ascendencia común y evolución biológica de las especies, así como de sus cambios en el tiempo. La biología evolucionista es una especie de meta campo debido a que incluye científicos de muchas disciplinas tradicionales con orientación a la taxonomía. Por ejemplo, generalmente incluye científicos especializados en organismos particulares tales como la ornitología y la utiliza como medio para responder a preguntas generales sobre la evolución.
La biología evolutiva es una
disciplina académica independiente que surgió en los años 1930 y 40 como resultado de la síntesis evolutiva moderna. Sin embargo, es en los años 1970 y 80 que un importante número de universidades crearon departamentos de biología evolutiva.

Historia del pensamiento evolucionista

Retrato de Lamarck

Portada de El Origen de las Especies
Artículo principal: Historia del pensamiento evolucionista
La idea de una evolución biológica ha existido desde épocas remotas, notablemente entre los Helénicos como Epicuro, pero la teoría moderna no se estableció hasta llegados los siglos XVIII y XIX, con la contribución de científicos como Christian Pander, Jean-Baptiste Lamarck y Charles Darwin. En el siglo XVIII la oposición entre fijismo y transformismo es ambigua. Algunos autores, por ejemplo, admiten la transformación de las especies limitada a los géneros, pero niegan la posibilidad de pasar de un género a otro. Otros naturalistas hablan de "progresión" en la naturaleza orgánica, pero es muy difícil determinar si con ello hacen referencia a una transformación real de las especies o se trata, simplemente, de una modulación de la clásica idea de la scala naturae. Lamarck es el primero en formular explícitamente una teoría de la evolución, pero no fue hasta la publicación del El Origen de las Especies de Charles Darwin cuando el hecho de la evolución comenzó a ser ampliamente aceptado. Una carta de Alfred Russel Wallace, en la cual revelaba su propio descubrimiento de la selección natural, impulsó a Darwin a publicar su trabajo en evolución. Por lo tanto, a veces se comparte el crédito con Wallace por la teoría de la evolución (a veces llamada Teoría de Darwin-Wallace).
A pesar de que la teoría de Darwin pudo sacudir profundamente la opinión científica con respecto al desarrollo de la vida (e incluso resultando en una pequeña revolución social), no pudo explicar la fuente de variación existente entre las especies, y la propuesta de Darwin de la existencia de un mecanismo
hereditario (pangénesis) no satisfizo a la mayoría de los biólogos. No fue recién hasta fines del siglo XIX y comienzos del XX, que estos mecanismos pudieron establecerse.
Cuando se "redescubrió" alrededor del 1900 el trabajo de
Gregor Mendel sobre la naturaleza de la herencia que databa de fines del siglo XIX, se estableció una discusión entre los Mendelianos (Charles Benedict Davenport) y los biométricos Walter Frank Raphael Weldon y Karl Pearson), quienes insistían en que la mayoría de los caminos importantes para la evolución debían mostrar una variación continua que no era explicable a través del análisis mendeliano. Finalmente, los dos modelos fueron conciliados y fusionados, principalmente a través del trabajo del biólogo y estadístico R.A. Fisher. Este enfoque combinado, que empleaba un modelo estadístico riguroso a las teorías de Mendel de la herencia vía genes, se dio a conocer en los años 1930 y 1940 y se conoce como la teoría sintética de la evolución.
En los años de la década de 1940, siguiendo el
experimento de Griffith, Avery, McCleod y McCarty lograron identificar de forma definitiva al ácido desoxirribonucléico (ADN) como el "principio transformante" responsable de la transmisión de la información genética. En 1953, Francis Crick y James Watson publicaron su famoso trabajo sobre la estructura del ADN, basado en la investigación de Rosalind Franklin y Maurice Wilkins. Estos desarrollos iniciaron la era de la biología molecular y transformaron el entendimiento de la evolución en un proceso molecular: la mutación de segmentos de ADN (ver evolución molecular).
A mediados de la década de 1970,
Motoo Kimura formuló la teoría neutralista de la evolución molecular, estableciendo de manera firme la importancia de la deriva génica como el mayor mecanismo de la evolución. Hasta la fecha continúan los debates en esta área de investigación. Uno de los debates más importantes es sobre la teoría del equilibrio puntuado, una teoría propuesta por Niles Eldredge y Stephen Jay Gould para explicar la escasez de formas transicionales entre especies.

Impacto de la teoría de la evolución

A medida que se ha ido desarrollando la comprensión de los fenómenos evolutivos, posturas y creencias bien arraigadas se han visto revisadas, vulneradas o por lo menos cuestionadas. La aparición de la teoría evolutiva marca un hito, no solo en su campo de pertinencia al explicar los procesos que originan la diversidad del mundo vivo; sino también más allá del ámbito de las ciencias biológicas. Naturalmente, este concepto biológico choca con las explicaciones tradicionalmente creacionistas y fijistas de algunas posturas religiosas y místicas; y bien que aspectos como el de la descendencia de un ancestro común, aún suscita reacciones en algunas personas
El impacto más importante de la teoría evolucionista se da a nivel de la historia del pensamiento moderno y la relación de este con la
sociedad. Este profundo impacto es en definitiva debido a la naturaleza no teleológica de los mecanismos evolutivos: es decir que la evolución no sigue un fin u objetivo. Las estructuras y especies no "aparecen" por necesidad (ni por designio divino) sino que a partir de la variedad de formas existentes solo las mejor adaptadas son conservadas en el tiempo. Este mecanismo "ciego", independiente de un plan, de una voluntad divina o de una fuerza sobrenatural ha sido explorado en consecuencia en otras áreas del saber.
La adopción de la perspectiva evolutiva para abordar problemas en otros campos se ha mostrado enriquecedora y muy vigente; sin embargo en el proceso también se han dado abusos (p.e. el atribuir un valor biológico a diferencias culturales y cognitivas) o deformaciones de la misma (como justificativo de posturas
eugeneticas); las cuales han sido usadas como "Argumentum ad consequentiam" a través de la historia de las objeciones a la teoría de la evolución.

Evolución y sistemas éticos y sociales
La teoría de la evolución por acción de la
selección natural también ha sido adoptada como fundamento para varios sistemas éticos y sociales, como el Darwinismo social, el cual mantiene que la supervivencia del más apto explica y justifica las diferencias de bienestar y éxito entre las sociedades, las personas y la eugenesia, que claman que la civilización humana estaba revirtiendo la selección natural permitiendo que los menos aptos sobrevivieran y se procrearan en exceso con respecto a los más aptos. Después de que las atrocidades del Holocausto fueran vinculadas con la eugenesia, la opinión pública científica dejó de ver de manera favorable la relación entre la selección natural y el Darwinismo social y la eugenesia (a pesar de que tampoco había sido realmente aceptada universalmente en el pasado).
Algunos creacionistas, como
Kent Hovind, creen que la evolución es la base para el Nazismo, Comunismo, Marxismo, la alabanza a la Madre Tierra, racismo, etc.
La noción de que los humanos comparten ancestros comunes con otros animales, también afectó la manera en la que algunas personas ven la relación entre los humanos y otras especies. Muchos de los defensores de los
derechos humanos mantienen que si los animales y humanos son de la misma naturaleza, por lo que entonces los derechos no pueden ser distintos para los humanos.

Evolución y religión
Artículos principales:
Creacionismo, Diseño inteligente, y Evolución teísta
Antes de que la geología se convirtiera en una ciencia, a principios del siglo XIX, tanto las religiones occidentales como los científico descontaban o condenaban de manera dogmática y casi unánime cualquier propuesta que implicara que la vida es el resultado de un proceso evolutivo. Sin embargo, a medida que la evidencia geológica empezó a acumularse en todo el mundo, un grupo de científicos comenzó a cuestionar si una interpretación literal de la creación relatada en la Biblia Judeo-Cristiana podía reconciliarse con sus descubrimientos (y sus implicaciones). Algunos geólogos religiosos, como Dean William Auckland en Inglaterra, Edward Hitchcock en Estados Unidos y Hugo Millar en Escocia siguieron justificando la evidencia geológica y fósil solo en términos de un Diluvio universal; pero una vez que Charles Darwin publicara su Origen de las Especies en 1859 la opinión científica comenzó a alejarse rápidamente de la interpretación literal de la Biblia.
Este debate temprano acerca de la validez literal de la Biblia no se llevó a cabo tras puertas cerradas, y desestabilizó la opinión educativa en ambos continentes. Eventualmente, instigó una
contrarreforma que tomó la forma de un renacimiento religioso en ambos continentes entre 1857 y 1860.
A pesar que la teoría de la evolución ha sido demostrada científicamente, algunos grupos, principalmente en Estados Unidos, interpretan en las
Escrituras que solo un ser supremo pudo crear directamente a los humanos y a otros animales como especies separadas y acabadas. Este punto de vista es comúnmente llamado creacionismo, y sigue siendo defendido por algunos grupos religiosos, particularmente los protestantes estadounidenses; principalmente a través de una forma de creacionismo contemporáneo llamado Diseño inteligente. Esto ha llevado a un duro conflicto entre la creación y evolución en la historia de la educación pública de este país, aunque actualmente más bien es un fenómeno local en algunos estados; ya que es obligatoria la enseñanza de la teoría de evolución. (aunque cabe destacar que también a afectado a otros países, por ejemplo, en el año 2005 en Italia hubo un intento de suspensión de la enseñanza de la teoría de la evolución).
En respuesta a la aceptación científica de la teoría de la evolución, muchos religiosos y filósofos han tratado de unificar los puntos de vista científico y religioso, ya sea de manera formal o informal; a través de un "creacionismo pro-evolución". Así por ejemplo algunos religiosos han adoptado un enfoque creacionista desde la
evolución teísta o el creacionismo evolutivo, en donde Dios provee una chispa divina que inicia el proceso de la evolución, y (o) donde Dios creó el curso de la evolución.
Por ejemplo, a partir de
1950 la Iglesia Católica Romana tomó una posición neutral con respecto a la evolución con la encíclica Humani generis del Papa Pío XII. "El Magisterio de la Iglesia no prohíbe el que —según el estado actual de las ciencias y la teología— en las investigaciones y disputas, entre los hombres más competentes de entrambos campos, sea objeto de estudio la doctrina del evolucionismo, en cuanto busca el origen del cuerpo humano en una materia viva preexistente —pero la fe católica manda defender que las almas son creadas inmediatamente por Dios—. ". El Papa Benedicto XVI ha afirmado que "existen muchas pruebas científicas en favor de la evolución, que se presenta como una realidad que debemos ver y que enriquece nuestro conocimiento de la vida y del ser como tal. Pero la doctrina de la evolución no responde a todos los interrogantes y sobre todo no responde al gran interrogante filosófico: ¿de dónde viene todo esto y cómo todo toma un camino que desemboca finalmente en el hombre?"[2] .
En los países o regiones en los cuales de la mayoría de la población mantiene fuertes creencias religiosas, el creacionismo posee un atractivo mucho mayor que en los países donde la mayoría de la gente posee creencias
seculares. Desde los años 1920 hasta el presente en los Estados Unidos, han ocurrido varios ataques religiosos a la enseñanza de la teoría evolutiva, particularmente por parte de los cristianos fundamentalistas y protestantes; si bien entre los últimos esta no es una posición unánime.

Otras teorías y criticas científicas
Artículo principal:
Historia de las objeciones y críticas a la teoría de la evolución
La teoría sintética es el modelo explicativo más explorado y robusto de los que se dispone actualmente para comprender los fenómenos evolutivos. Aunque no existe hoy una sólida teoría alternativa desarrollada, algunos científicos si han reclamado la necesidad de realizar una reforma, ampliación o sustitución de la Teoría Sintética, con nuevos modelos capaces de integrar la Biología del Desarrollo o incorporar una serie de descubrimientos biológicos cuyo papel evolutivo se está debatiendo, tales como ciertos mecanismos hereditarios epigenéticos, la horizontaltransmisión horizontal; o propuestas como la eistencia de múltiples niveles jerárquicos de selección o la plausibilidad de fenómenos de asimilación genómica para explicar procesos macroevolutivos (incremento de complejidad por integración en complemento al incremento en complejidad por transformación -gradual-).
Los aspectos más criticados de la teoría sintética son: el
gradualismo, que ha obtenido como respuesta el modelo del equilibrio puntuado de Niles Eldredge y Stephen Jay Gould[3] ; la preponderancia de la selección natural frente a los motivos puramente estocásticos; la explicación al comportamiento del altruismo; y el reduccionismo geneticista que evitaría las implicaciones holísticas y las propiedades emergentes a cualquier sistema biológico complejoSin embargo, la comunidad científica los considera solo como desacuerdos y nuevas ideas sobre puntos específicos, y que la teoría misma no ha sido rebatida en el campo de la biología, siendo comunmente descrita como la "piedra angular de la biología moderna".